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Amo /
Bubble or drop distortion in a straining flow in two
dimensions

Jean-Marc Vanden-Broeck
Department of Mathematics. Stanford University, Stanford, California 94305

Joseph B. Keller

Departments of Mathematics and Mechanical Engineerin& Stanford University, Stanford,
California 94305
(Received 21 January 1980; accepted 16 May 1980)

The distortion of a two-dimensional bubble (or drop) in a straining flow of an inviscid imcompressible
fluid is examined theoretically. Far from the bubble the stream function of the flow is assumed to be axy,
where a is a constant. Within the bubble the pressure is assumed to be a constant Pb, and the bubble
surface is assumed to have a surface tension a. Then, the shape of the bubble depends upon the single
dimensionless constant y = 2(pb -p,)/(2aa) 21'p", where p is the fluid density, p, is the stagnation
pressure of the flow, and the size of the bubble is proportional to (2a/pa2)113. For y large, it is found
that the bubble tends to a circle of radius (2a/pa2)113 y-1. As y decreases, numerical solutions show that
the bubble at first becomes a square with rounded corners. Then, it develops four horns or spikes with
large curvature near their ends. Finally at y- - 1.8, the two sides of each spike touch each other near
the tip and enclose a small bubble there. It is also found that there is a maximum value of the Weber
number above which there is no steady solution.

I. INTRODUCTION AND FORMULATION finding the flow consists of determining x+ iy as an

In the mixing of two fluids, a drop or bubble of one analytic function of p + io in the half-plane 0> 0 satis-

fluid will be distorted and possibly split into smaller fying Eq. (1) at infinity. Then, the bubble surface is

parts because of the flow of the other fluid around it. given by setting 0 = 0 in x( p + i) and y( p + i$), and letting

In order to study this phenomenon, we consider the o range from - A to 2. The symmetry conditions re-

two-dimensional case of a drop or bubble of one fluid quire that the bubble surface be normal to the x and y

in a steady flow of another fluid, assumed to be inviscid axes where it intersects them, which yields

and incompressible. We take into account the surface yI(- I 0)=x,,(0,0)=0 .(2)

tension a at the interface, but we ignore the flow insidethe ropor ubbl, asumng tat he ressre s aOn the bubble surface the pressure in the fluid, whichth e d r o p o r b u b b le , a s s u m in g t ha t th e p r e s s u r e is ai s g v n b t h B e o u l e q a o , m st d f r f o m p
constant Pb throughout it. From now on we shall write is gienhe i euatio t ifferfrom Ti"buble"to man ithe buble r dop.by ark, where k is the curvature of the interface. This
"bubble" to mean either bubble or drop. leads to the boundary condition

In order to formulate this problem we assume that the
stream function of the flow without the bubble is Oxy,
where a is a constant and x and y are Cartesian coor-
dinates. This flow is symmetric about both the x and y
axes, so we assume that the bubble and the flow around
it will have the same symmetry. Then, it suffices to
determine the flow only in the first quadrant x 1- 0, y, x,
y > 0 (see Fig. 1).

We introduce dimensionless variables by choosing
(2a/pa) 1 /3 as the unit length and (2ea/p)'1/ as the unit C

velocity. We also introduce the dimensionless potential
function bfp and stream function bk. Here, b>0 is I x

dimensionless constant to be chosen so that ( =A and
-at the stagnation points on the x and y axes, re-

spectively. We denote the streamline along the two
axes and along the arc of the bubble boundary in the
first quadrant by 0=0. In these variables bo-xy and
b(p _ (x 2 - y2 )/2 at Infinity, so that b( + i0) - (x + iy)9/2
or, equivalently,

x+ iy -(2b)' 1 2(s + i0)1 12 (1)

at infinity. The flow occupies the region b t 0 of the FIG. 1. The bubble, some stream lines of the flow, and the .
(p, '0 plane, and the bubble boundary corresponds to the x and y axes are sketched. The x' and y" axes, used In Sec. V,
segment - 2 < o < I of the axis b =0. The problem of are also indicated.
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p,-pq2 /2=p.-ak, on-1<io<-, 0=0. (3) III. NUMERICAL PROCEDURE

Here, p,, p, and q are, respectively, the stagnation Before solving the problem we note that y,(g',0) must
pressure, density, and the speed of the fluid outside be singular at (p = 1 like ( - ()1/2 . Therefore, we eli-

the bubble. In dimensionless variables (3) becomes minate this singularity by replacing v' with the new

variable A defined by
q 2 =k-v, on- <(P< , 0=0, (4) (P=1-,? .•(12)

where the dimensionless parameter y is defined by
7hen, we introduce the N mesh points 01 given by

v y= 20 . -P.p)/2v)'. (5) Q ,=(I-1)/2'.11(N-1), 1 =1 ... , N , (13)

The problem can be further simplified by requiring
the bubble to be symmetric about the line y =x. This and the N - 1 corresponding unknowns

implies that , _(Jy 1=1 N
y,(-( ,o)=-x0(9,0), -2<4;<2. (6) Y-a/.,.'I1 -. (4

By using Eq. (6) we can restrict our analysis to the in- if we define Y'. by (14) with I =N, it then follows from
terval 0<V< i. (11) and (12) that

II. REFORMULATION x8(, 0)=- y. (15)

It is convenient to reformulate the boundary valueprobem a anintegro-differential equation by consid- Now, we define t / ((3,+ (31 ,I)/2, and then consider
problem as an x6(tet c 1 2, 0). We compute it from (8) rewritten in terms
ering the function of P. However, the integrand contains the factor ((')/2

(4 + j)l/(x +jy).)-(b12)l/ ,  =(I-)1/,2 which has a singular derivative at 0 =2 " /

which is analytic in the half-plane 0'> 0 and vanishes at In order to integrate this factor accurately, we replace

infinity as a consequence of Eq. (1). Therefore, on y. by (y. -ym)+y., use the trapezoidal rule with mesh

4=0, its real part is the Hilbert transform of its imag- point 01 on the intervals containing y, -y,, and analy-

inary part. By symmetry its imaginary part vanishes on tically evaluate the integral containing yk. Then,

4=0, 4v I> A and therefore the Hilbert transform yields x((,.,/2, 0) is given in terms of the y.
Next, we compute y8 (3,,, ,0), xI(3. /2 ,O), and

11/2/ (O'W/Y.)(-' ,O)d4  yB0(91.I/2,O) in terms of the y., by using four-point dif-
2 O) -- 4 d ference formulae. From these expressionswe calculate

1 (0 (_.o,)/,X.( o, O) YpPee and y.. at (01., 1/2,0), by noting that
+ V J.11  (P Y d,

(7) 20

and
We now use the symmetry condition (6) to rewrite (7) (X€;y_ + iy_

in the form (x+ iy) . - 4 .3

( ) b\/ 2+1 c-/ Then, we substitute these expressions into (9) at the
( N-1 Points(01 /2,90), 1=1, ... , N- 1 to obtainN-1

/ ( 2  y( 1 ) nonlinear algebraic equations in the N +I unknowns y',,
Or V,/ , dp,. 1=1, ... , N and b. The last two equations are obtained

0 (" + (8 from (10) and (15) by using three-point Lagrange extra-
(8) polation formulae to evaluate their left sides.

Next, we express the boundary condition (4) in terms of The N nonlinear equations were solved by Newton's
x. and y., noting that q=b2(x + y2)'. Then, (4) be- iteration method. For some large value of y, the initial
comes approximation for the bubble surface was taken to be

a circular arc. Iterations were continued until theS - 4, V I<, 0=0. (9) solution converged within a given tolerance. This solu-

(x.+y.) tion was then used as the initial guess for a smaller

Now, (8) and (9) together constitute a nonlinear in- value of y and so on.

tegro-differential equation for y.(V) in the interval After a solution for the y, and b converged for some
0 -p< , a=0. The symmetry conditions value of y, the profile x(P,0), y(P,0) was obtained by

integrating x, and ya. Typical profiles for various
(10) values of y are shown in Fig. 2. For y large the bubble

surface is close to a circle of dimensionless radiusX(0,0)=-.(0,0) ,( I) 1 . For smaller values of , the bubble surface is

complete the formulation of the problem for y.(cp,0) close to a square with rounded corners. As y decreases
and b. This formulation of the problem, and the num- further the bubble surface elongates in the directions
erical method to be described follows closely the work midway between the axes, developing four horns or
of Vanden-Broeck and Keller." 2  spikes.
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Y=0 the branch on the left of the maximum inFig. 3, the
potential energy V decreases as W increases, so this

rY--1.24 branch is probably unstable. For the branch on the
right of the maximum, V increases as W increases, so

=5 it is probably stable.

IV. SOLUTION FOR -y LARGE
1.0 0.0 1.0 For y large we seek the bubble surface as a small

perturbation of a circle of radius y'. Thus, we write it
in polar coordinates r,0 as

r =y'*+y'p(8)+ (y5) . (19)

The curvature k of this surface is given by

FIG. 2. Computed bubble profiles for various values of -y. k=y +f"[p"()+ p(e)]+O(y-3) . (20)
These profiles were found by the method of Sec. I. Now, the unperturbed complex potential V+ io is given

as a function of z = x + iy by
The efficiency of the numerical scheme was found to

be limited by the high curvature at the ends of the spikes. q'o+ji"o =z'/2+ l/2y4 z2 . (21)
Accurate solutions for y <- 1.3 could not be computed From (21) we see that on the circle of radius y-', 4o
even with N = 50. Thus, in the last section we shall con- =y-2 cos 20 and, therefore, q0 = - 2y " sin20.
sider an analytical approach to determine the ultimate
form of the horns as y is further decreased. In the boundary condition (4) we use Eq. (20) for k and the

From the numerical solution we can calculate the preceding result for q0 . The terms in y' lead to

area A of the bubble and the potential energy V. The p"(0)+ p(O) =4 sin2 20 . (22)
potential energy V is equal to the surface tension a The solution p of (22) satisfying p'(0) = p'(r/4) = 0, when
times the length of the surface. In dimensional vari- used in (19), yields the result
ables we have

r ==' / -2(1+, cos48) 4 + O( 5 ) . (23)

' 1/3p- [ (p,0)+y2(,,0)r/2 d3 , (16) We next substitute (23) into the definitions of V and A
0 and get

A=(2-a 8( y(/3,O)x,(IO) d21 V=(2dO/pa')'/' 2v(y'-2 4 )+O(y "5) , (24)
0 A = (2r/p2)2/3 r(v2'- 4Y 5) + O( 6 ) . (25)

+ -2[y(0,0)]..,-,/') . (17) The formulae (24) and (25) agree with the numerical
/ results of Sec. I within 0.5% for y > 4.

We also introduce the Weber number W defined by

W=A/1(p2/2o)1/. (18)
A. W2

The integrals in (16) and (17) were evaluated by the v
trapezoidal rule. The results are shown as functions of
y in Fig. 3. 7

We see that the potential energy V is a monotone de-
creasing function of y. However, the dimensionless 6
area A, which is equal to the square of the Weber num-
ber W2, is not monotonic but has a maximum at y -- 0.2.
Thus, the figure shows that there is a maximum or
critical value of We above which there is no steady sol-
ution of the kind considered here. This maximum value 3

is W ~2.1. The existence of a maximum Weber number A,W2

has previously been found for a two-dimensional bubble 2~or drop in R uniform potential flow by Vanden-Broeck

and Keller,' and for a two dimensional drop in a Stokes'
flow by Buckmaster and Flaherty' and by Vanden-
Broek In the three-dimensional case the correspond- +
ing results were obtained by Moore, s El Sawi,6 and - .0 -05 0 0 1.0
Miksis et al. for potential flow and by Rallison and FIG. 3. Computed values of the bubble area A [in units of
Acrivoss for Stokes' flow. (2a/p&1) 1 3 j and potential energy V (in units of (2oA/pal)l) /

as functions of y, based upon Eqs. (16) and (17). With this
There are two solutions for each value of the Weber choice of units the lower curve is also a graph of w2, the

number in an interval below the maximum value. For square of the Weber number.
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V. THE LIMITING SHAPE OF THE BUBBLE

When y is less than about - 1.3, the bubble has four
slender spikes. They are oriented along the lines y
= *x, as shown in Fig. 2. Because the spikes are so
slender, their shape can be found approximately by
using the slender body theory for bubbles presented by
Vanden-Broeck and Keller.2 In lowest order, the flow -1.0 0 1.0
about a symmetric slender bubble is approximated by
the flow about a rigid plate lying along the center line
of the bubble. In the present case the center lines of
the four spikes consist of two straight line segments,
each of some length 2a, lying along the lines y = *x.
We introduce the coordinates x', y' with axes along
these lines, and find the potential b~p(x',y') of the flow FIG. 4. The ultimate form of the bubble at y=-1.8, when
about these plates, requiring that at infinity b(p ~(x2  opposite sides of each spike just touch one another and enclose
-y 2)/2. Evaluating this potential on the plate y' = 0, a small sub-bubble near the tip.
x'> 0 we obtain

b(p(x', 0) =(a4
- x'4)1 /2/2 . (26) The integration constant (3 in (33) is to be found in order

By differentiating (26) we find that the flow speed q on to make ti(x') satisfy (32). For each value of y, (32)
the plate is can be solved numerically for A3 by iteration. Then,

0) = x'3 (a _ XP4)-1/2, X, > 0 . (27) (33) gives the approximate shape of the bubble.

By solving for (3 in this way for various values of y,Before using q to get the bubble shape, we shall deter- and examining (33), we find that opposite sides of each
mine the half-length a of the center lines. We do so by spike touch each other at y = - 1.8. Then, each spike
requiring the suction force F, exerted by the flow on contains a small sub-bubble near its tip, as shown in
the end of a spike, to balance the surface tension 2a'. Fig. 4. This profile represents the ultimate form of
As we see in Ref. 9 [p. 412, Eq. (6.5.4)], F= pA 2 /4. our family of solutions. For smaller values ofy oppo-
Here, A is the coefficient in the expansion bcp ~ArI/; site sides of each spike cross one another, which is
X cos0/2 in terms of polar coordinates with their origin physically inadmissible. We could obtain physically
at the end of the plate. Upon setting F = 2a and intro- acceptable solutions for Y< - 1.8 by allowing the pres-
ducing dimensionless variables we obtain sure in the sub-bubble to be different from that in the

Af=4/7 . (28) main bubble. We shall not find them because they are
From (26) we find that A2 =a3 , so (28) yields probably unstable. It is likely that the sub-bubble

would become detached from the main bubble if ? were(29) decreased below - 1.8.
We next use (27) for q in (4) and approximate the cur-

vature k by - 1.. (x'). Here, the equation of the bubble Finally, we shall indicate how the preceding slender
is y' =(x') for x',y' in the first quadrant of the x,y body theory can be improved upon when it is used to
plane, i.e., for x' > y' >_ 0. Then Eq. (4) becomes find a bubble with a sub-bubble at the tip of each spike.

jWe first replace each sub-bubble by a straight segment= - x' 6(a4 
- x'4 ) -r • (30) of length 1. Then, we calculate the flow around the main

At the end of the spike we require bubble terminated by these segments, and the shape of
i l (a) = 0. (31) the main bubble, using the numerical method of Sec.

III. This yields a two-parameter family of solutions,
In addition, by symmetry, the bubble must be normal to with parameters y and 1. Then, for each v we find the
the y axis where it crosses that axis. In the primed 1(y) for which the forces balance at the tip of each seg-
coordinates this axis is the line x' =y', and this sym- ment. Next, we solve the equation analogous to (30)
metry condition becomes for the function ri(x') which gives the surface of the

4 (32) sub-bubble, requiring the surface position and slope
whe re x' =7(x'). to be continuous where the main bubble meets the sub-whonnere ating q. (bubble. At last, we determine the pressure in the sub-

Upon we bubble by requiring that 11 =0 at the end of the sub-bub-
obtain. If this pressure is required to be the same as that

(x') = Y- -y - - .- (a - x') log(a - x') in the main bubble, we find the value of y corresponding1 2to the ultimate configuration shown in Fig. 4.
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